Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model
نویسندگان
چکیده
منابع مشابه
Coisotropic Submanifolds in Poisson Geometry and Branes in the Poisson Sigma Model
General boundary conditions (“branes”) for the Poisson sigma model are studied. They turn out to be labeled by coisotropic submanifolds of the given Poisson manifold. The role played by these boundary conditions both at the classical and at the perturbative quantum level is discussed. It turns out to be related at the classical level to the category of Poisson manifolds with dual pairs as morph...
متن کاملCoisotropic embeddings in Poisson manifolds
We consider existence and uniqueness of two kinds of coisotropic embeddings and deduce the existence of deformation quantizations of certain Poisson algebras of basic functions. First we show that any submanifold of a Poisson manifold satisfying a certain constant rank condition, already considered by Calvo and Falceto (2004), sits coisotropically inside some larger cosymplectic submanifold, wh...
متن کاملGeneralized Complex Geometry and the Poisson Sigma Model
The supersymmetric Poisson Sigma model is studied as a possible worldsheet realization of generalized complex geometry. Generalized complex structures alone do not guarantee non-manifest N = (2, 1) or N = (2, 2) supersymmetry, but a certain relation among the different Poisson structures is needed. Moreover, important relations of an additional almost complex structure are found, which have no ...
متن کاملStar products and branes in Poisson-Sigma models
We prove that non-coisotropic branes in the Poisson-Sigma model are allowed at the quantum level. When the brane is defined by second-class constraints, the perturbative quantization of the model yields Kontsevich’s star product associated to the Dirac bracket on the brane. Finally, we present the quantization for a general brane.
متن کاملSupersymmetric WZ-Poisson sigma model and twisted generalized complex geometry
It has been shown recently that extended supersymmetry in twisted firstorder sigma models is related to twisted generalized complex geometry in the target. In the general case there are additional algebraic and differential conditions relating the twisted generalized complex structure and the geometrical data defining the model. We study in the Hamiltonian formalism the case of vanishing metric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Letters in Mathematical Physics
سال: 2004
ISSN: 0377-9017,1573-0530
DOI: 10.1007/s11005-004-0609-7